Stability of an octocoral-algal symbiosis over time and space

نویسندگان

  • Tamar L. Goulet
  • Mary Alice Coffroth
چکیده

In symbiosis, 2 taxonomically different organisms co-exist, each pursuing their own agenda and yet, they are linked in one entity. A mutualistic symbiosis may break up if it is no longer beneficial to either one of the partners. Changing needs over time or changing environmental conditions may prompt symbiont switching. For example, corals may survive elevated temperatures by switching their algal symbionts. If switching occurs, the new combination of host and symbiont genotypes may perform better. Conversely, the partners may be fixed for life, with the degree to which the mutualism responds to changing selection pressures dictated by the existing partners. Understanding the genotypic dynamics of a mutualism is important for predicting the potential resilience of a mutualism over time and in the face of environmental perturbations. Although mutualisms tend to be characterized at the species level or higher, host-symbiont dynamics is an individual-level question, requiring individual-level analysis. We used multilocus DNA fingerprinting to examine long-term temporal and spatial symbiont change in the mutualism between the octocoral Plexaura kuna and its algal symbionts (zooxanthellae). We monitored zooxanthella genotypes within a colony for up to 10 yr, among P. kuna clonemates, across different habitats and in colonies transplanted to novel environments. In all instances, the prominent zooxanthella genotype within a P. kuna colony remained unchanged although zooxanthella genotypes varied among genetically distinct P. kuna colonies. Such tremendous temporal and spatial stability may occur in other coral hosts, influencing the reaction and survival of mutualisms during environmental change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The acquisition of exogenous algal symbionts by an octocoral after bleaching.

Episodes of coral bleaching (loss of the symbiotic dinoflagellates) and coral mortality have occurred with increasing frequency over the past two decades. Although some corals recover from bleaching events, the source of the repopulating symbionts is unknown. Here we show that after bleaching, the adult octocoral Briareum sp. acquire dinoflagellate symbionts (Symbiodinium sp.) from the environm...

متن کامل

Host-microbe interactions in octocoral holobionts - recent advances and perspectives

Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disea...

متن کامل

Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus?

A marine sea slug, Elysia chlorotica, has acquired the ability to carry out photosynthesis as a result of forming an intracellular symbiotic association with chloroplasts of the chromophytic alga, Vaucheria litorea. The symbiont chloroplasts (kleptoplasts) are functional, i.e. they evolve oxygen and fix CO(2) and actively transcribe and translate proteins for several months in the sea slug cyto...

متن کامل

On the stability of equilibrium for a reformulated foreign trade model of three countries

In this paper, we study the stability of equilibrium for a foreign trade model consisting of three countries. As the gravity equation has been proven an excellent tool of analysis and adequately stable over time and space all over the world, we further enhance the problem to three masses. We use the basic Structure of Heckscher–Ohlin–Samuelson model. The national income equals consumption outla...

متن کامل

Crystal structure of a symbiosis-related lectin from octocoral.

D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003